Hamiltonian Truncation Effective Theory

نویسندگان

چکیده

Hamiltonian truncation is a non-perturbative numerical method for calculating observables of quantum field theory. The starting point this to truncate the interacting finite-dimensional space states spanned by eigenvectors free $H_0$ with eigenvalues below some energy cutoff $E_\text{max}$. In work, we show how treat systematically using effective theory methodology. We define integrating out above can be computed matching transition amplitude full theory, and gives corrections order as an expansion in powers $1/E_\text{max}$. non-local, non-locality controlled $H_0/E_\text{max}$. also non-Hermitian, discuss whether necessary feature or artifact our definition. apply formalism 2D $\lambda \phi^4$ compute leading $1/E_\text{max}^2$ Hamiltonian. that these non-trivially satisfy crucial property separation scales. Numerical diagonalization residual errors $1/E_\text{max}^3$, expected power counting. present counting 3D perform calculations demonstrate scales

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Hamiltonian of Electroweak Penguin for Hadronic b Quark Decays

In this research we work with the effective Hamiltonian and the quark model. We investigate the decay rates of matter-antimatter of quark. We describe the effective Hamiltonian theory and apply this theory to the calculation of current-current ( ), QCD penguin ( ), magnetic dipole ( ) and electroweak penguin ( ) decay rates. The gluonic penguin structure of hadronic decays is studied thro...

متن کامل

Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach

We present a formal procedure for structure-preserving model reduction of linear second-order and Hamiltonian control problems that appear in a variety of physical contexts, e.g., vibromechanical systems or electrical circuit design. Typical balanced truncation methods that project onto the subspace of the largest Hankel singular values fail to preserve the problem’s physical structure and may ...

متن کامل

A method for Hamiltonian truncation: a four- wave example

A method for extracting finite-dimensional Hamiltonian systems from a class of 2+1 Hamiltonian mean field theories is presented. These theories possess noncanonical Poisson brackets, which normally resist Hamiltonian truncation, but a process of beatification by coordinate transformation near a reference state is described in order to perturbatively overcome this difficulty. Two examples of f...

متن کامل

Effective Hamiltonian of strained graphene.

Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SciPost physics

سال: 2022

ISSN: ['2542-4653']

DOI: https://doi.org/10.21468/scipostphys.13.2.011